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1. Introduction

Monocentric imaging lenses, which are constrained to
have only spherical surfaces centered on a single point
of symmetry, can produce a high-resolution image on a
spherical image surface. Since high-resolution spheri-
cal detectors are not currently available, in practical
application this image surface is optically transferred
onto multiple conventional focal planes. This can be
done by relay through multiple adjacent sets of secon-
dary optics, as in monocentric multiscale imagers
[1,–3]. Alternately, it can be done via imaging fiber
bundles with curved input and flat output faces, as
in the monocentric fiber-coupled imagers [4–9]. These
successful demonstrations motivate a more system-
atic exploration of the capabilities of the monocentric
imaging lens.

In a lens with centered spherical or hemispherical
surfaces, off-axis aberrations of coma and astigma-
tism are cancelled [10], but we need to correct spheri-
cal and chromatic aberration and their combination
spherochromatism. Reducing spherochromatism is
difficult, especially with large apertures. But despite

the monocentric constraint, and even with a small
number of degrees of freedom, it is possible to obtain
a number of useful designs [3,4,8,11].

In a previous paper [8], we reported the general
aberration analysis of two-glass symmetric (2GS)
monocentric lenses and results of our 2GS global
search algorithm applied for a specific example, a
12 mm focal length, F/1.7, 120° field of view lens
operating in 470–650 nm visible waveband. The al-
gorithm described identified the optimum diffraction
limited design [Fig. 1(a)] and a number of additional
families of high-performing solutions. However, if we
substantially increase the lens spectrum, light collec-
tion, or the scale, even after repeated 2GS global
search, we will not achieve desired performance
[Figs. 1(b)–1(d)]. The 2GS monocentric architecture
reaches its limits.

Achieving a similar level of performance with
these extended operating specifications demands
more complex monocentric lens architectures, with
more degrees of freedom. This is especially true when
increasing more than one of these performance met-
rics. In this paper, we show methods and algorithms
for advanced monocentric lens design. We categorize
the monocentric lens design space, provide proce-
dures for optimum and near-optimum lens design
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with complexity and performance trade-off consider-
ations, and in Section 5 provide specific lens designs
for selected applications.

2. Options for Improving Monocentric Lenses

A. Review of Monocentric Lens Architectures

The simplest monocentric lens architecture is a sim-
ple glass ball [12,13] with inset aperture stop. Histor-
ically, the more common approach was an achromatic
2GS architecture, used by Sutton in 1856, Baker in
1942 [14], and more recently by Brady and co-work-
ers [1,3] and Ford and co-workers [2,15]. A more com-
plex three-glass symmetric structure (3GS) with
third-order aberration analysis was designed and
fabricated by Oakley [16] for a panoramic spherical
retroreflector. However, high order aberrations at
large apertures were not systematically corrected.

Our goal was to push the performance of the
existing lens and identify the limit of what monocen-
tric lenses can or cannot do. We started by using
commercial lens design software to explore the mono-
centric lens design space by a systematic increase of
degrees of freedom in the system, while maintaining
the monocentricity constraint, to identify the major
configurations, which showed the most promise. We
constrained the focal length and did a lens optimiza-
tion for all options with a given number of degrees of
freedom (i.e., glass choice, surface radius) and com-
pared performance to the diffraction limit. Glass as
an optical material has at least two description
parameters, the index of refraction, and the Abbe
number. To model the dispersion over a broader spec-
tral range would require an expression with even
more free parameters. But since we don’t have the
ability to create a glass with arbitrary index and
dispersion, the choice of an existing glass material
represents only a single degree of freedom. We use
their accurate models described by Sellmeier,
Extended, or Schott glass model formulas.

Figure 2 summarizes the result, showing 100
different geometries and the seven preferred design

architectures (drawn with a larger scale). Those
preferred architectures were labeled as

1GS: One-glass symmetric with 1 degree of free-
dom (DOF)
2GS: Two-glass symmetric with 3 DOF
3GS: Three-glass symmetric with 5 DOF
3GA-7: Three-glass asymmetric with air gap
and 7 DOF
4GA-8: Four-glass asymmetric with air gap and
8 DOF
4GA-9: Four-glass asymmetric with air gap and
9 DOF
5GA-10: Five-glass asymmetric with air gap and
10 DOF.

The 1GS, 2GS, 3GS, and 4GA-8 geometries were
chosen for rigorous analysis and investigation, be-
cause they offered the best performance for their
structural complexity.

The simplest 1GS geometry is a symmetric glass
ball, with only one degree of freedom (1 DOF). When

Fig. 1. MTF performance curves showing the limits of the globally optimized 2GS monocentric geometries. The examples are derived
from an initial high-performing lens (a), which is pushed to improve spectral bandwidth (b), numerical aperture (c), or focal length (d)
[using a 3× scale change to the illustration]. For each, the resolution of the two-glass structure drops well below the diffraction limit,
indicating a need for greater complexity.

Fig. 2. Monocentric lens design space showing glass only
(upper half) and glass with air gap (lower half) regions divided
by the seven preferred design architectures in between.

8288 APPLIED OPTICS / Vol. 52, No. 34 / 1 December 2013



the desired monocentric system is being designed,
focal-length input constrains one of the radii, so
the choice of glass in this structure remains as
the single variable. Since there is no chromatism
correction, this architecture is suitable mostly for
monochromatic imagers with a relatively large
F-number. In air, if we allow this geometry to become
asymmetric, or increase degrees of freedom to two,
the optimizer will converge back to the original
1GS structure as depicted in the upper half of Fig. 2.
A similar outcome results if we introduce an air gap
and push up to the maximum of six degrees of free-
dom (lower part of Fig. 2).

The next logical step was to make the achromatic
lens with an additional glass, which yields the 2GS
geometry with three degrees of freedom. As in 1GS
geometry, optimization after lens splitting and intro-
ducing an air gap will converge back to the simpler
2GS geometry, while taking the upper “glass modifi-
cation only” path on the chart by allowing all radii to
vary will land in a 5DOF two-glass architecture that
performs substantially the same as the simplest 2GS
structure.

Adding the third and fourth glass in the monocen-
tric structure and breaking the symmetry goes deep
into the upper “glass modification only” region of the
design space and offers only marginal improvement
over 2GS and 3GS structures, not justifying the cost
of manufacture. Therefore, simple symmetry break-
ing and glass adding is not productive. The upper
half of the diagram is only partially populated—if
we allow more glasses and more degrees of freedom,
architecture will essentially converge to some
variant of the Luneburg lens solution [17].

On the other hand, starting from 5DOF structure
with three glasses and introducing an air gap also
doesn’t appear to help, as we continue along the lower
part of Fig. 2 (glass with air gap path) up to the 6th
degree of freedom. Then just a simple step over to
the 7 degrees of freedom 3GA-7 architecture gives a
substantial increase in performance, as shown with
red arrow in Fig. 2. Further derivatives 4GA-8,
4GA-9, and 5GA-10 just keep up with the same
trend. Out of these asymmetric structures with an
air gap, 4GA-8 is the most attractive one to pursue
with an addition of 5GA-10 for larger scale lenses
where the maximum glass slab size plays an impor-
tant role.

Looking at this comprehensive monocentric lens
design space chart, an interesting fact is that simply
adding the degrees of freedom at some point does not
help. This is somewhat counter-intuitive. For the
two, four, and six degrees of freedom cases, no pre-
ferred monocentric lens structure exists. All sym-
metry breaking attempts in this ≤6 DOF area
inevitably converge back to the symmetric structures
when the lens is designed for the use in air. A slight
change to this rule applies only when the lens has a
different medium in object and image space (e.g., an
immersed lens), where a 4 DOF two-glass structure
with symmetric core becomes the preferred design.

Our next goal was to find specific high-
performance designs. To do this we developed global
search algorithms for symmetric geometries, and
systematic search methods for the asymmetric geom-
etries with an air gap, as described in the following.

B. Review of Monocentric Lens Design Methods

Throughout the exploration of monocentric lens de-
sign space, several methods and optimization algo-
rithms were developed. In previous work [8], we
presented a global optimization algorithm for the
2GS architecture. Now a similar approach was used
in one-glass (1GS) and three-glass (3GS) symmetric
architectures, and a similar global search algorithm
was developed. Since all these global optimization
routines are essentially brute force calculations
(for all possible glass combinations), with further in-
crease in the number of degrees of freedom the cost of
computing became prohibitive. Therefore, we devel-
oped systematic search methods. All the methods use
spectral band, focal length, and F-number as an in-
put for the desired system, and a predefined pool of
commercially available glasses. These included the
Schott, Ohara, Hoya, Sumita catalogs as well as
CAF2 and fused silica, totaling 604 different materi-
als available as of April 2013. Hikari, CDGM, and
NHG manufacturers were not used because almost
all of their glasses represent duplicate replacements
of the glasses already included.

The optimization methods used, in order of in-
creasing complexity and computation time, were

• 1GS global optimization algorithm (seconds to
complete)
• 2GS global optimization algorithm (minutes

to complete)
• 3GS global optimization algorithm (days to

complete)
• 2GS seeded Hammer search (hours to days)
• 4GA-8 architecture 5-D “near global” search

(up to 3 weeks).

Preliminary results of these methods were pre-
sented in [18] but will be described in more detail
here. Global optimization algorithms for 1GS, 2GS,
and 3GS architectures are multithreaded exact ray
trace routines implemented in MATLAB. These check
all possible glass choices (604 for 1GS, 364,816 for
2GS, and more than 220 million combinations for
3GS geometry). They were executed on PC worksta-
tions with two Intel 3.1 GHz Xeon E5-2687 W or four
Intel 2.7 GHz Xeon E5-4650 Sandy Bridge based pro-
cessors (16∕32 CPU cores systems). The 3GS global
optimization algorithm was also rewritten and tested
on Kepler based NVIDIA K20 Tesla and K5000
Quadro GPU cards, with speed improvements on
the order of 70×, effectively cutting down the comput-
ing time required from days to hours.

The 2GS seeded Hammer search approach used
glass combinations of the top 2GS candidates ob-
tained through global search, then imported in
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ZEMAX. The lens symmetry was broken and an air
gap manually introduced.

Additional glass layers were added one by one, as
shown in Fig. 3, with optimization at each step. In
practice, the 2GS geometry was optimized by human
assistance through ZEMAX Hammer search to 3GA-
7 and then to 4GA-8 architecture or even more com-
plex ones, if needed. The most complicated design ap-
proach, which was guaranteed to give the best result
for the 4GA-8 geometry, was a five-dimensional “near
global” search algorithm, also implemented in
MATLAB. Like the seeded Hammer search, the 5D
optimization algorithm starts with the core identi-
fied as the best 2GS candidates, and then the
algorithm tries all combinations for the additional
three glasses used in the 4GA-8 geometry. Because
of five-dimensional optimization space complexity,
this algorithm requires up to 3 weeks to complete
running continuously on the 32CPU core worksta-
tion. We used this algorithm at the end of the lens
design procedure to determine the absolute best
candidate for manufacture and test.

3. Advanced Design Algorithms and Results

A. Improved 2GS Global Search Using 5 Wavelengths

In the previous paper [8] we reported a general aber-
ration analysis of 2GS monocentric lenses, and ap-
plied a global search algorithm to identify the best
design for a visible waveband monocentric lens. To
generate a ranked list of all lens candidates, this
algorithmuseda three-step optimization for eachpos-
sible two-glass combination: minimization of third-
order Seidel spherical and longitudinal chromatism
aberrations, exact ray trace for multiple ray heights
at the central wavelength, and the calculation of
polychromatic mean square wavefront deformation.
The algorithm described was sufficiently accurate
for the visible (photographic) spectral range, where
the glass dispersion curve is approximately linear.

However, to look for solutions in an extended wave-
band, we modified the existing 3λ algorithm by
replacing the first two steps by exact ray trace with
five equally spaced wavelengths over the desired
spectrum. The modified exact ray trace cost function
became

Q �
X5
m�1

(X3
i�1

Abs�ΔS�hi; λm��

�
X3
j�1

X
k≠j

Abs�ΔS�hj; λm� − ΔS�hk; λm��
)
; (1)

where ΔS is longitudinal aberration of the ray of
height hi. Also, we modified the polychromatic mean
square wavefront deformation calculation for an in-
creased number of wavelengths and increased the
Zernike polynomials expansion to the ninth order.
The system polychromatic mean square wavefront
deformation �ΔΦ�2 became

�ΔΦ�2 � 1
5

X5
i�1

��Cnew
20 �λi��2

3
� �C40�λi��2

5
� �C60�λi��2

7

� �C80�λi��2
9

� �C100�λi��2
11

�
: (2)

We then used the improved 2GS global search 5λ
algorithm with the updated glass catalog to look
again for the optimal designs for f � 12 mm F/1.7
470–650 nm camera and a longer focal length
lens needed for the AWARE 2 Gigapixel imager,
with f � 70 mm, F/3.5, and a 486–656 nm
spectrum.

For the f � 12 mm case, the previously optimal top
family of solutions remained on top while quite a few
intermediate (but still inferior) families were gener-
ated (Table 1). For simplicity, since there are many
similar glasses in the catalogs, a number of glasses
that have a refraction index within �0.03 and an
Abbe number within�2 of the glasses shown we con-
sidered as replacement glasses and omitted from
the table.

On the other hand, the longer f � 70 mm lens
benefited significantly from the increased number of
materials, and we identified two better candidate
families than previously reported: K-VC82/P-LAF37/
S-BAH11/K-LasFN10 with a CAF2 core [as
shown in Fig. 4(a)] and M-LAF81/MP-LAF81/
L-LAM69/S-LAH60 with K-GFK68 core [as shown in
Fig. 4(b)].

The monocentric 2GS global search generates a
full list of ranked solutions, which is why a global
search algorithm is more powerful than simply doing
guided hammer/global searches in a commercial op-
tical design software like ZEMAX or CODEV. From a
ranked list, the lens designer can quickly choose the
specific designs subject to specific constraints such as
lens volume, differential thermal expansion, or glass
material availability.

B. Three-Glass Symmetric Global Search

After reaching the 2GS architecture limits, we ex-
plored the 3GS architecture shown in Fig. 5. Similar
to 2GS geometry, from the first order principles, the
focal length is given by [8,16]

1
f
� 2

r1

�
1 −

1
n2

�
� 2

r2

�
1
n2

−

1
n3

�
� 2

r3

�
1
n3

−

1
n4

�
(3)

Fig. 3. Optimization of preferred monocentric lens geometries.
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For each chosen glass combination, one radius is a
function of the other two radii and the predefined
focal length target value.

From the real ray-trace geometrical equations we
obtained

OE � h

sin
n
2
h
arcsin

�
h
r1

�
− arcsin

�
h

r1n2

�
� arcsin

�
h

r2n2

�
− arcsin

�
h

r2n3

�
� arcsin

�
h

r3n3

�
− arcsin

�
h

r3n4

�io : (4)

The longitudinal aberration for the ray with input
height hi is given by

ΔS�hi� � OE�hi� − f (5)

Finally, we constructed the following merit func-
tion for 3GS geometry optimization:

Q �
X9
i�1

X8
j�1

pj · Abs�ΔS�hj; λi��

�
X9
i�1

X8
j�1

pj · Abs�ΔS�pj · f ·NA; λi��; (6)

where f is the focal length of the lens, NA the numeri-
cal aperture, and p � �1; 0.9; 0.8; 0.7; 0.6; 0.5; 0.4; 0.3�
are the pupil zones used to calculate eight ray

heights. To allow for extended spectral bands and
material dispersion curves, a ray trace is done for
nine equally spaced wavelengths inside the spectrum
of interest. In the 3GS geometry there is around 220
million glass combinations, and the optimization

problem is inherently two-dimensional. In an at-
tempt to reduce the computing time to reasonable
limits, we identified and made use of an interesting
fact about 3GS geometries. In the two-dimensional
optimization space of the 3GS monocentric system,
if the glass choice is viable, areas of minimum merit

Table 1. Updated List of Top Solutions for the SCENICC F/1.7 f � 12 mm 470–650 nm 120° Monocentric Lensa

Fast Exact Ray
Tracing [mm]

ZEMAX Optim.
Radii [mm]

No. Outer Glass Internal Glass R1 R2 �ΔΦ�2 R1 R2 MTF at 200 lp∕mm

1 S-LAH79 K-LaSFn9, TAF5, S-LAH59 9.060 3.781 0.00547 9.068 3.792 0.648
2 TAFD55

(LASF35)
K-LaFK50, S-YGH52, M-TAC60… 8.529 3.800 0.00618 8.533 3.807 0.622

3 N-LASF46A/B
(TAFD25,
L-LAH86)

M(C)-TAF1, TAF5, K-LaFK50(T),
S-LAH59, K-LaSFn9,
S-LAH65(V)…

9.057 3.614 0.00622 9.065 3.630 0.609

4 L-NBH54 K-LaFn9, S-LAM55 8.949 3.629 0.00633 8.960 3.649 0.606
5 K-GIR79

(LAH80,
N-LASF9)

K-LaFK50T, M(C)-TAF1,
N-LAF21, K-LaSFn16, TAF4…

9.290 3.435 0.00637 9.300 3.456 0.591

6 TAFD40 M-TAFD305, L-LAH85V, L-LAH83 9.533 3.730 0.00749 9.537 3.735 0.626
7 S-LAH79 M-TAF101, N-LAF21, K-LaSFn16,

TAF4, M-TAF1, TAC4, K-LaKn12…
8.470 3.802 0.00757 8.477 3.814 0.626

8 K-PSFn5 N-LASF45(HT), S-LAM66 9.348 3.600 0.00793 9.357 3.617 0.607
9 TAFD40 N-LAF2, K-LaF2, LAF2, S-LAM2,

K-LaFn11, S-LAM61…
8.191 3.792 0.00795 8.194 3.796 0.592

10 LASF35
(S-LAH79)

K-LaK9, K-LaK12, N-LAK12,
S-LAL12…; K-VC80, K-LaK13,
P-LAK35, L-LAL13, S-LAL13…

7.487 3.746 0.00856 7.492 3.752 0.561

11 N-LASF46A/B
(TAFD25,
L-LAH86)

N-LAK12, K-LaK9, N-LAK12,
S-LAL12, LAC12, L-LAL12…

7.813 3.701 0.00886 7.817 3.707 0.534

aPrescriptions shown pertain to glass combinations, marked in bold.

Fig. 4. New f � 70 mm AWARE 2 2GS candidates.
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function (high performance) look like a long and
nearly linear ravine [Fig. 6(a)].

So it is possible to fix the radius of the second glass
shell at two points with some reasonable values,
cross the ravine at two r2 levels to get its orientation,
and then trade the two-dimensional optimization
problem for one-dimensional track along the ravine.
This increased the computational efficiency and
made it possible for the global search to run in
24–48 h on a high-performance workstation
(4 × 2.7 Hz Intel Xeon E5-4650). Because the ravine
is substantially flat at the bottom, we had the free-
dom to choose the second radius in 3GS system, and
this was helpful in avoiding excessively thin shell sol-
utions, which are impractical to fabricate. Figure 6(b)
shows the comparison of 2GS and 3GS top candi-
dates for the 12mmF/1.7 monocentric lens operating
in the extended visible (435–850 nm) waveband.
Both solutions are strong apochromats [Fig. 6(c)],
but unfortunately the 3GS geometry offered only
modest performance improvement in MTF and
the spot size. A similar result is observed when
the global 3GS search is applied in all scenarios
for the f � 12 mm imager lens variants discussed
in Section 1 of this paper. 3GS global search gener-
ates a number of high-ranked solutions that have
nearly identical performance, and it is difficult to
say which one is the absolute best performer. Some
solutions have slightly better MTF but worse RMS
spot size, and vice versa. The candidates shown in
Fig. 7 are chosen by MTF performance.

An interesting fact about the 3GS geometry is that
all good solutions are always derivatives from the
good 2GS candidates. In other words, glass core ma-
terials of the top candidates identified in 2GS global
search also form top 3GS solutions. That kind of
behavior was observed in all design scenarios. There-
fore the “quick track” to global 3GS solutions may be
the exploration of all glass combinations, constrained
only by the limited number of materials for the core.
This effectively reduces the CPU computing time
from days to hours or, in the case of GPU computing,
from hours to minutes. After a number of global 3GS
searches and comparisons, we finally concluded that
over the scale of apertures and waveband parame-
ters we considered here, the 3GS architecture does
not offer a significant performance improvement
over the 2GS architecture.

C. Seeded Hammer Optimization

For the desired monocentric lens specification, as a
start, a 2GS global search was performed and the full
list of ranked candidates was created. Then, the
multiple top candidate prescriptions were imported
to ZEMAX and manual lens splitting and air gap in-
troduction were performed: first guiding the candi-
date optimization to 3GA-7 structure, and then to
4GA-8 structure. All glass materials were substitu-
tion variables except the core, and within hours
(sometimes even minutes) Hammer search would
find a useful solution. We must emphasize that in or-
der for that to happen, the most important thing is a
good starting core material for the given design.
Without 2GS global search algorithm input, both
ZEMAX and CODEV may have a hard time converg-
ing to the best solutions if the starting design core
material is not close to the ideal, especially for the
low F-number cases.

The reason for that was the shape of multiple local
minimums in the monocentric design space as dis-
cussed in the previous paper [8]. Optimized 4GA-8
structures through the ZEMAX Hammer optimiza-
tion seeded from top 2GS candidates of the modified
12 mm imager specification lenses are shown in
Fig. 8. The original lens [Fig. 8(a)] was substantially

Fig. 6. Top 12 mm F/1.7 435–850 nm 3GS monocentric lens candidate (a) optimization space, (b) MTF comparison curves with top 2GS
candidate, and (c) apochromatic shaped focal shift curve.

Fig. 5. Monocentric three-glass symmetric (3GS) architecture.
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diffraction-limited in both the 2GS and 3GS geom-
etry, so with the original design specification only
a slight improvement is seen.

For the other three cases, however, the more com-
plex lens achieved substantial performance improve-
ment. Hammer optimization is not global, and
even higher performance designs may exist, so the
4GA-8 architecture is a promising choice for high-
performance lenses. This lens is sufficiently complex
that an exhaustive and truly global optimization is
impractical, but in the following section we describe
a five-dimensional 4GA-8 monocentric architecture
optimizer to identify “near-global” lens designs.

D. Five-Dimensional 4GA-8 Near Global Optimization

A useful solution is to break the front/rear symmetry
and introduce an asymmetric air gap between the
crown and flint glass core [5,19]. Introducing such
an air gap is a common method used for control of
spherochromatism [20–22]. This approach yields
the four-glass air gap asymmetric geometry, which
improves performance on extended spectral bands,
larger apertures, and longer focal length systems.
The four-glass with air gap (4GA-8) lens architecture
is shown in Fig. 9.

Attempts to optimize the four-glass architecture
with ZEMAX software shows that the result of opti-
mization strongly depends on the initial starting

point position. Some results obtained from very dif-
ferent starting points in the radii space showed good
image quality but others were trapped in lower qual-
ity pockets. Such behavior of the commercial lens
design software indicates that the optimization space

Fig. 7. MTF performance comparison of globally optimized 2GS and 3GS monocentric lenses for extension of the original lens specifi-
cations. The plots show only on-axis MTF, to allow comparison of 2GS and 3GS architectures.

Fig. 8. MTF performance curves of the 4GA-8 lens geometries derived from the original lens specifications through seeded Hammer
optimization.

Fig. 9. Four-glass asymmetric with air gap (4GA-8) monocentric
lens architecture.
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of the 4GA-8 monocentric lenses has some specific
features that must be investigated and special opti-
mization algorithms to be developed. As for the 2GS
and 3GS architectures, for lens quality evaluation we
used fast exact monocentric lens ray tracing. For the
input ray at height h it gives the value for the length
OG (all radii values assumed positive):

OG �
h∕ sin

n
arcsin

�
h
R1

�
� arcsin

�
h

R2n2

�
� arcsin

�
h

R2n4

�
− arcsin

�
h

R1n2

�
− 2 arcsin

�
h

R2n3

�
� arcsin

�
h
R4

�
− arcsin

�
h

R4n4

�
− arcsin

�
h
R5

�
� arcsin

�
h

R5n5

�
� arcsin

�
h
R6

�
− arcsin

�
h

R6n5

�o �7�

The longitudinal aberration ΔS�hi� for this ray
will be

ΔS�hi� � OG�hi� − f ; (8)

where f is the focal length. To form the optimization
criterion, the results of fast exact ray tracing with
Eqs. (7) to (8) were used. The entrance heights h
of these rays are

hi � NA · f · pi; (9)

where pi is an array of reduced rays heights at the
pupil. The array is defined as

p�
�
1 0.97 0.88 0.8 0.7 0.6 0.5 0.4 0.05

�
:

(10)

For the optimization criterion C, the following sum
was used:

C �
X9
i�1

X9
j�1

�
pj ·

ΔS�hi�
λj

�
2
� �ΔS�h9; λ1� − ΔS�h9; λ9��2

� �ΔS�h3; λ1� − ΔS�h3; λ9��2
� �ΔS�h1; λ1� − ΔS�h1; λ9��2; (11)

where λj is the wavelength in micrometers used for
weighting. The first term of the criterion C equation
is a sum of squared values proportional to lateral
aberrations and the following three members
are squared chromatic longitudinal aberrations
differences at the pupil reduced rays heights 1,
0.88, and 0.05. The longitudinal chromatic difference
at the reduced pupil height 0.05 is similar to the
classical chromatic focus shift. Pupil points with re-
duced pupil height 1 and 0.88 are critical for the
spherochromatism correction. For optimization of
any monocentric lens operating in an extended wave-
band, we used nine wavelengths. For example, for
criterion calculations for monocentric lenses de-
signed to operate with a front-illuminated silicon

CMOS or CCD sensor, we used the waveband 0.4
to 1.0 micrometers, divided into eight equal
segments at nine wavelength values.

This criterion demonstrated a good correlation
withmodulation transfer function (MTF) for all types
of monocentric lenses operating in extended
wavebands.

The starting point for the 4GA-8 systematic search
is to make use of the core from multiple 2GS top can-
didates as seeds for further optimization. The most
promising glass K-GFK68 was chosen as a basic core
glass for the systematic solution search, and then the
other glasses were replaced in all possible combina-
tions. For each glass combination, the search of mini-
mum of the criterion C [Eq. (11)] was performed and
the optimized system was found. With the chosen
glass combination we have five radii to optimize.
In fact there are seven radii in the optical scheme,
including the image surface radius (Fig. 9), but the
third radius is equal and opposite to the second ra-
dius because the use of the central ball lens, and the
image surface radius must match the focal length.

Investigation of the criterion C behavior showed
the multi-extremum nature of the function being op-
timized. But in our case, on top of this problem, we
have a number of linear combinations between opti-
mization parameters, or in other words, lines and
surfaces in the optimization space over which the
criterion does not change or changes very slowly.
The optimization process is stuck somewhere in
these ravines depending on the starting point posi-
tion. Such areas are multidimensional ravines or
saddle type stationary areas.

For each glass combination, the minimum value of
the criterion C is located at different positions in the
radii space, but all glass combinations still have the
characteristic general shape of solutions in the 5D
radii space. For every glass combination, the contour
surfaces with the constant values of criterion C
around the minimums appear as thin, “pancake-
shaped” volumes in the 5D radii space. These thin
pancake volumes are pierced with a net of saddle
type ravines, and are connected over the main rav-
ine. Applying conventional optimization methods re-
sults in slow convergence to a solution trapped in the
saddle type ravines, rather than the global minimum
[23,24]. The behavior of the gradient method in
such cases is illustrated in Fig. 10 (adapted from
[24]). Figure 10(a) shows the gradient method
behavior in the general case of the normal minimum
shape. The gradient descent direction at any step
is directed orthogonally to the criterion contour line
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and straight descent is continued up to the point
when it reaches another lower value contour line
for which the direction of descent would be
tangential.

The process converges quickly to the minimum in
just a few steps. In the case of a degraded (stretched)
minimum with the strong linear dependence
between optimization parameters, as shown in
Fig. 10(b), the gradient method begins to oscillate.
In [25], the method of conjugated gradients was pro-
posed. It was shown that apexes of segmented lines
in the gradient method are located on the lines show-
ing the direction to the minimum and after several
steps we can create these lines by using the least
square method. The move along these lines will
facilitate a fast descent to the minimum.

While the method of conjugated gradients can help
in a number of degraded minimum cases, our situa-
tion is more sophisticated. The minimum volume has
the shape of a thin pancake in the 5D space, with the
walls close to being parallel, such that gradient
descent segments Xi

0X
i�1
0 and Xi�1

0 Xi�2
0 will practi-

cally coincide. The points Xi
0, Xi�2

0 , Xi�4
0 will be

located so close to each other that we will not be able
to reliably connect them with the line. Moreover, all
the points inside the five-dimensional thin pancake
minimum area are saddle-like points. At every point
we have Hesse matrix [23,26] having one nearly zero
negative eigenvalue, demonstrating a strong linear
dependence between the first (R1) and last (R6) radii,
while other eigenvalues will be strongly positive. The
saddle type nature of the area of the minimum sol-
ution is another reason that conventional optimiza-
tion methods are likely to be trapped at different
points inside the pancake, where the specific end-
point depends sensitively on the initial starting point
of the optimization. In this situation, even the
method of conjugated gradients fails.

The optimization of our lens architecture required
the development of special methods, which we will
illustrate using the example of a lens with the follow-
ing glass combination: P-LASF47, K-GFK68,
K-LASFN6, and N-KZFS11. This glass combination
demonstrated sufficiently good performance during
our search for the optimal solution and was chosen

as an example to demonstrate the optimization
procedure.

Our search for the near minimum begins with a
gradient descent [23] to the closest local minimum
from the average radii solution for this architecture
(Fig. 9). The optimization of this glass combination
begins from the average radii combination at point
M0 � �7.0; 2.9;−2.9;−4.2;−4.5;−7.8;−12.0�, in milli-
meters. The value of the criterion C [Eq. (11)] at this
point is 13.23. The local gradient descent method
quickly arrives to the point inside pancake area with
radii array M1 � �7.06457; 2.95860;−2.95860;
−4.16102;−4.46400;−7.74390�, which again are
shown in millimeters, and criterion value at this
point is C � 0.00709. The contour lines graphs of
the criterion C [Eq. (11)] in the plane section of radii
R1-R6 of the five-dimensional space is shown
in Fig. 11.

Theminimum area is a thin long strip, which is the
section of a five-dimensional thin pancake. The mini-
mum point M1 is shown with information box on
Fig. 11(a). We used the Hesse matrix eigenvectors
[26] to find the direction of the strip. The five eigen-
values of the Hesse matrix at this point are −0.01024,
0.25782, 0.91727, 25.44, and 21148.91. Note that ra-
dius number three does not participate in the
optimization because it is equal to the negative value
of the second radius. The two eigenvectors having
smallest eigenvalues are E1 � �−0.60071; 0.00309;
−0.00223; 0.00967;−0.79988� and E2 � �0.31650;
0.12960;−0.50686;−0.75252;−0.24462�, where the
eigenvector direction cosines are related to the radii
R1, R2, R4, R5, and R6, respectively. The section of
criterion C shows that the main ravine is related to
the eigenvector E1. We will name this ravine as the
main virtual ravine (Fig. 12).

Knowing that gradient methods are descending in
the direction orthogonal to the contours of constant
criterion C value, it is not surprising that gradient
methods from any initial point come toward the main
virtual ravine but to different locations over this rav-
ine depending on the location of the initial point. The
3D graph of the criterion C with dependence on the
first and last radii is shown in Fig. 11(b). The value of
the criterion function C in the direction orthogonal to
the ravine quickly reaches the value of 0.25, with

Fig. 10. Gradient descent method applied for normal minimum
and degraded minimum shape.

Fig. 11. Optimization criterion ravine of minimums (projection
onto 3D space).
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radii space step size as small as 0.02 mm.We will use
the main ravine as an entrance area into the pancake
space. The ravine is located very close to the straight
line associated with the eigenvector E1 (the black
dotted line in Fig. 12). We travel over this straight
line that is defined by the first eigenvector direction
at the point of the minimum M1 and make a number
of local optimizations, which will quickly come to the
actual lowest point of the ravines.

Following over the direction of eigenvector E1 we
made 17 steps with 0.05 increments in the radii
space (8 steps in the direction of lower first radius
and 8 steps in the opposite direction) and, making
the gradient descent from each point, obtained the
array of minimums. Table 2 shows the central 10
minimums (ravine bottom points) of this scan with
minimum M1 over the main ravine at place number
9. Table 2 shows that minimums are located over a
deep and slightly curved ravine, with a strong linear
dependence between the first and last radii.

The body of the pancake shaped minimum is lo-
cated over the 3D sphere inside the 5D space, and
this sphere is orthogonal to the ravine, as shown
in Fig. 11(b). The directions of the minimum incre-
ment of the criterion C at each bottom point over
the ravine is a direction of the second eigenvector
while the first one is still directed over the ravine.
The tunnels into the pancake (black dashed lines
in Fig. 12) [26] are located over the directions of
second eigenvectors. These vectors are orthogonal
to the ravines (blue dash-dot lines in Fig. 12).

To find the point of the criterion C minimum we
crossed the ravine structure inside the pancake area
of solutions from the point M1 in the direction of the
second eigenvector E2. Then we initiated local gra-
dient descents with the step of 0.025 mm. Values
of C over this line after local gradient descents are
0.00709 (point M1), then [0.00622, 0.00558,
0.00504, 0.00470, 0.00439, 0.00412, 0.000400,
0.00393. 0.00392, 0.00399]. The ravine with the
minimum value of criterion C is at the point M2,
having C � 0.00392 and the array of radii is
M2��7.13558;2.98846;−2.98846;−4.27410;−4.63395;
−7.79880�. Then we made 17 steps along eigenvector
E1 of this ravine with the short gradient descent. The
values of C over ravine are [0.00431, 0.00424,
0.00413, 0.00405, 0.00401, 0.00399, 0.00394,
0.00395, 0.00393, 0.00392, 0.00391, 0.00394,
0.00395, 0.00396, 0.00404, 0.00413, 0.00418]. The
minimum value of C � 0.00391 is at the point
M3 with array of radii M3 � �7.10544; 2.98890;
−2.98890;−4.27469;−4.63355;−7.83869�.

We performed this whole operation in cycles until
the step when the minimum is located at the initial
point of the last cycle. The whole optimization path is
shown by the solid red line in Fig. 12.

Values of C around M3 are [0.00426, 0.00425,
0.00405, 0.00391, 0.00385, 0.00388, 0.00394], where
the new minimum point M4 has C � 0.00385, and
array of radii M4 � �7.09785; 2.98510;−2.98510;
−4.26180;−4.61467;−7.83319�. The next step along
this new ravine associated with the point M4
gives the point M5 at one step from M4 with
C � 0.00384. The array of radii at M5 is
M5��7.08293;2.98531;−2.98531;−4.26206;−4.61453;
−7.85324�.

The next crossing of the ravines did not succeed
and the minimum C point remained at the point
M5, indicating that we had approached the limit of
this process. The next step was to substitute the ar-
ray of radii at the point M5 with C � 0.00384 into
ZEMAX software, where we obtained the MTF value
of 0.54 at 200 lp∕mm frequency. After that we used
the standard Zemax process for a local optimization
of the optical prescription to obtain the maximum
MTF. The final results are shown in Table 3. For
the MTF optimized scheme MTF at 200 lp∕mm is
0.567. It is slightly better than we had at the opti-
mum point of criterion C (Eq. 11). The construction

Fig. 12. Optimization procedure inside the 4GA-8 optimization
space.

Table 2. Array of Local Minimums Over the Main Ravine in 4GA-8 Optimization Space.a

5 6 7 8 9 10 11 12 13 14

Cinitial 0.0132 0.0089 0.0074 0.0071 0.0071 0.0071 0.0075 0.0092 0.0135 0.0220
r1 6.945 6.975 7.005 7.035 7.065 7.010 7.125 7.155 7.186 7.216
r2 2.959 2.959 2.959 2.959 2.959 2.959 2.958 2.959 2.956 2.957
r3 −2.959 −2.959 −2.959 −2.959 −2.959 −2.959 −2.959 −2.963 −2.956 −2.957
r4 −4.162 −4.162 −4.161 −4.161 −4.161 −4.161 −4.161 −4.161 −4.161 −4.161
r5 −4.462 −4.462 −4.463 −4.463 −4.464 −4.464 −4.465 −4.465 −4.466 −4.466
r6 −7.904 −7.864 −7.824 −7.784 −7.744 −7.704 −7.664 −7.624 −7.584 −7.544
Cfinal 0.0072 0.0071 0.0071 0.0071 0.0071 0.0071 0.0072 0.0073 0.0075 0.0078

aRadii shown pertain to the areas at the bottom of the ravine reached after optimization.
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of a low burden computer criterion from the results of
raytracing, which will perfectly correlate with
MTF performance, is still an open problem [24,27].
However, we consider that our criterion is in good
correlation with MTF, allowing us to sort the results
of the search for 4GA-8 architecture.

The optimization process from the different initial
point MR0 having R1 � 7.5 mm shows another solu-
tion inside the neighboring pancake area on the right
(Fig. 12), with the value of C � 0.00337. The opti-
mized MTF at frequency 200 lp∕m for this solution
is 0.575. The optical prescription is shown in the
Table 4.

Similarly, the next optimization process from the
initial point ML0 having R1 � 6.5 mm shows an-
other solution inside the neighboring pancake on
the left with C � 0.00402. The optimized MTFat fre-
quency 200 lp∕m for this solution is 0.562. The opti-
cal prescription is shown in the Table 5. In the global

search among these three feasible solutions we pre-
fer the solutions of first type shown in Table 3, as
they have the smallest weight.

The procedure described above was applied on all
other glass combinations, and our near-global search
resulted in 350 top solutions that are grouped in
seven distinctive families (Table 6). Glasses are con-
sidered replacement glasses if their index of refrac-
tion is within �0.03 range and Abbe number in �3
range of glasses shown in the table.

The example solution discussed before, shown in
Tables 3–5, belongs to the first family of solutions.
Figure 13 shows the optical layout of the lens and
MTF curves of the top solution from the first family
and compares it with the seededHammer result from
Fig. 8(b). The prescription of this near-global opti-
mum solution is shown in Table 7. Upon inspection
of the full solutions list, the seeded Hammer solution
was located with C � 0.006354 near-global search
criterion value and obviously far outside the top
solutions families.

Our near global 5D search improved the MTF per-
formance at 200 lp∕mm over the seeded Hammer
solution by a 16% margin. Figure 14 shows graphs
of sensitivities of the front and back-illuminated
silicon sensors [28].

Our next goal was to modify the 400–1000 nm
4GA-8 solution from Table 3 to operate with front-
illuminated silicon sensor.

We constructed ZEMAX merit function as a func-
tion keeping at minimum radii of point spread func-
tions at all nine wavelengths (operators REAR),
maximizing MTF at frequencies 100, 160, and
200 lp∕mm and keeping the focal length at 12 mm
(operator EFFL).

Substitution of the wavelength weights for the
front-illuminated silicon sensor and quick reoptim-
ization in ZEMAX gave the optical prescription
shown in Table 8.

The image quality is practically diffraction limited.
The MTF of the lens is shown in the Fig. 15. At the
200 lp∕mm the lens has 90% level of diffraction lim-
ited resolution. Back-illuminated silicon sensors are
sensitive to as low as 200 nm wavelength. We found
that achromatization in 200–1050 nm waveband is
out of ability of the 4GA-8 architecture at this scale
and aperture.

In order to avoid the use of expensive coatings
we decided to cut off the UV spectrum by using
the mounting meniscus made from the Schott
GG435 absorptive glass. Using an additional
mounting meniscus at the curved image surface is
optional and has little impact on imaging system
performance.

The optical prescription of themonocentric lens op-
erating with the back-illuminated silicon sensor is
shown in Table 9. GG435 color glass refraction indi-
ces were measured with Filmetrix F10-RT refrac-
tometer. The MTF and the layout of the lens are
shown in the Fig. 16. The image quality is close to
diffraction limited.

Table 3. Optical Prescription of the 400–1000 nm F/1.7 f � 12 mmMC
Lens Example Solution A � 5.63 g

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 7.05918 4.10337 P-LASF47 6.75121
2 2.95581 2.95581 K-GFK68 2.93356
STO Infinity 2.95581 K-GFK68 2.20989
4 −2.95581 1.26426 K-LASFN6 2.91646
5 −4.22007 0.35576 4.05564
6 −4.57583 3.27037 N-KZFS11 4.34140
7 −7.84620 4.14501 7.12060
IMA −11.9913 10.38526

Table 4. Optical Prescription of the 400–1000 nm F/1.7 f � 12 mmMC
Lens Example Solution B � 5.71 g

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 7.26696 4.34654 P-LASF47 6.93839
2 2.92041 2.92041 K-GFK68 2.89944
STO Infinity 2.92041 K-GFK68 2.20692
4 −2.92041 1.29818 K-LASFN6 2.88460
5 −4.21859 0.41330 4.05796
6 −4.63189 3.00543 N-KZFS11 4.39123
7 −7.63733 4.35056 6.95098
IMA −11.98789 10.38221

Table 5. Optical Prescription of the 400–1000 nm F/1.7 f � 12 mmMC
Lens Example Solution C � 5.72 g

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 6.56181 3.55968 P-LASF47 6.30232
2 3.00213 3.00213 K-GFK68 2.97882
STO Infinity 3.00213 K-GFK68 2.21707
4 −3.00213 1.16917 K-LASFN6 2.95718
5 −4.17130 0.24397 4.00443
6 −4.41527 4.06139 N-KZFS11 4.19853
7 −8.47720 3.51334 7.62830
IMA −11.99054 10.38469
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Both lenses have the core glass K-GFK68 with a
very high coefficient of thermal expansion,
TCE � 12.9, while surrounding glasses have low
TCE coefficients. For example, the front-illuminated
silicon sensor lens shown in Table 8: P-LASF47 glass
has TCE � 6.04 and K-LASFN6 glass has
TCE � 5.9. Normally the TCE difference less than
1.5 for cemented surfaces can be recommended for
outdoor optics [29]. Recently Norland Products Inc.
offered extremely low psi modulus NOA 76 [30]

optical cement, which can be used for glass pairs with
such high CTE differences.

ZEMAX thermal modeling of the schemes shown
in Tables 8 and 9 with a 10 micrometer thick layer
of NOA 76 optical cement for differential thermal
expansion shows that the lenses can operate in a
wide temperature range of −20 C to �50 C without
image quality degradation. Only a 0.02 mm back
focal length adjustment is required. Since monocen-
tric lenses were originally designed to be used
with refocusing [8], this procedure does not pose a
problem.

Finally, if we ask ourselves why the 4GA-8 archi-
tecture has such capabilities for achieving the high
performance monocentric designs, the answer lays

Table 6. Families of Solutions for F/1.7 12 mm Monocentric 4GA-8 400–1000 nm Lens Obtained Through Near-Global Search

Family 1st Glass 2nd Glass (Core) 3rd Glass 4th Glass (Meniscus) Near-Global Search Criterion MTF at 200 lp∕mm

I P-LASF50 K-GFK68 TAF1 E-ADF10 0.003253 0.583
II NBFD11 K-GFK68 TAF3 KZFS12 0.003572 0.569
III L-LAM72 K-GFK68 TAF1 S-NBH53 0.003591 0.567
IV TAF2 K-GFK68 P-LASF50 N-KZFS11 0.003808 0.577
V L-LAH83 K-GFK68 NBF1 KZFS12 0.003958 0.555
VI TAFD30 K-GFK68 P-LASF50 N-KZFS11 0.003970 0.559
VII P-LASF51 K-GFK68 S-LAH58 N-KZFS11 0.003978 0.553

Fig. 13. MTF curves for 12 mm, F/1.7, 400–1000 nm lenses ob-
tained through seeded Hammer search and near global five-
dimensional optimization (shown on layout).

Table 7. Optical Prescription of the 400–1000 nm F/1.7 f � 12 mm
Monocentric Near Global Solution

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 7.05656 4.20075 P-LASF50 6.75008
2 2.85581 2.85581 K-GFK68 2.83814
STO Infinity 2.85581 K-GFK68 2.20709
4 −2.85581 1.30890 TAF1 2.82507
5 −4.16471 0.42696 4.00744
6 −4.59167 3.54357 E-ADF10 4.35045
7 −8.13525 3.84990 7.34868
IMA −11.98514 10.37980

Fig. 14. Spectral response of front and back-illuminated silicon
sensor.

Table 8. Optical Prescription of the 400–1000 nm F/1.7 f � 12 mm
Monocentric Lens Operating with Front-Illuminated Silicon Sensor

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 7.04107 4.08409 P-LASF47 6.73508
2 2.95699 2.95699 K-GFK68 2.93476
STO Infinity 2.95699 K-GFK68 2.21103
4 −2.95699 1.26003 K-LASFN6 2.91758
5 −4.21702 0.35134 4.05282
6 −4.56835 3.30232 N-KZFS11 4.33494
7 −7.87067 4.12587 7.14073
IMA −11.99654 10.38982
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in the asymmetry and the presence of an air-gap. To
support that claim, on Fig. 17 longitudinal aberra-
tions over the pupil for 3GS and 4GA-8 architectures
are shown. Symmetric designs like 2GS and 3GS al-
ways have the shape of the longitudinal aberrations,
as in Fig. 17(a).

This single bending curve, as the aperture grows,
cannot be controlled, so the spherochromatism and
zonal spherical aberration become dominant and
limit the performance. On the other hand, presence
of an air gap and broken symmetry help correcting
those aberrations and adds an additional bending
to the curve as in Fig. 17(b).

4. Lens Complexity and Performance Trade-off

To explore the maximum achievable performance of
the monocentric lens geometries, we began with the
design constraint of a 12 mm focal length 120° FOV
imager and the visible waveband of 486–656 nm and
optimized the lens design to increase the aperture as
much as possible, subject to a predefined perfor-
mance metric. This performance constraint was to
require that the MTF was at least 70% of the

diffraction limit at 200 lp∕mm (the highest spatial
frequency needed for Nyquist sampling of a 2.5
micrometer pitch Schott 24AS optical fiber faceplate)
while simultaneously requiring that the RMS spot
size radius had to be less than 1.5× the Airy disc
radius (which maintained MTF at lower spatial
frequencies). While this metric is somewhat arbi-
trary, the trends of the results are indicative of a wide
range of related performance metrics, as applied to
the available degrees of freedom. The results are
shown in Fig. 18.

Ill chosen geometries, labeled in blue in Fig. 18
(1G-2, 2GAS, 3GA-6), converge to simpler ones
and do not enable an increase in aperture size.
The geometries labeled in black (1GS, 2GS, 3GS)
show results obtained by our global optimization
algorithm, while geometries labeled in red (3GA-7,
4GA8) are the result of the seeded Hammer optimi-
zation, starting from top 2GS candidates as seed
designs.

Fig. 15. MTF curves for 12 mm, F/1.7 lens operating with 400–
1000 nm front-illuminated silicon sensor sensitivity spectrum.

Table 9. Optical Prescription of the 435–1000 nm F/1.7 f � 12 mm
Monocentric Lens Operating with Back-Illuminated Silicon Sensor

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 6.92285 4.01591 NBFD11 6.62605
2 2.90694 2.90694 K-GFK68 2.88753
STO Infinity 2.90694 K-GFK68 2.21436
4 −2.90694 1.27374 K-LASFN17 2.87138
5 −4.18068 0.38453 4.02581
6 −4.56521 2.27558 KZFS12 4.33527
7 −6.84078 3.13995 6.28471
8 −9.98074 2.00000 GG435 8.75173
IMA −11.98074 10.37606

Fig. 16. MTF curves for 12 mm, F/1.7 lens operating with 435–
1000 nm back-illuminated silicon sensor sensitivity spectrum.

Fig. 17. Longitudinal aberrations of the (a) top 3GS and (b) top
4GA-8 architecture 12 mm F/1.7 monocentric lenses for 400–
1000 nm spectral band.
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Adding the second glass is helpful in controlling
the chromatic aberration, so there is a large increase
in achievable F-number in moving from geometry
1GS to 2GS. This is equivalent to going from a singlet
lens to a cemented doublet achromat. Adding the
third glass in the 3GS geometry gives marginal

chromatic aberrations improvement over 2GS,
whereas the other degrees of freedom (specifically,
2GAS with 4 DOF, and 3GA-6 with 6 DOF) provide
no improvement.

Breaking the symmetry and introducing an air gap
with the 7 DOFand 8 DOFarchitectures allows us to
further increase the aperture, and still meet the
desired MTF performance. Similar behavior is ob-
served for the longer 112 mm focal length lens, which
is also shown in Fig. 18.

The final step was to explore the design space for
four different focal length scales {f � 12 mm (the
SCENICC program lens scale), 40 mm, 70 mm
(AWARE2 program [1]) and 112 mm (AWARE10
program [31])}, and at each scale look at the maxi-
mum aperture for visible, extended visible, and
visible-NIR spectral wavebands, subject to the
MTF performance constraint described above. As
before, we used the global optimization for the
two-glass and three-glass symmetric systems (2GS,
3GS). For the three- and four-glass air gap candi-
dates (3GA-7, 4GA-8), the combination of our system-
atic fifth-dimensional optimizer with ZEMAX
hammer optimization was used. The entire set of
results is summarized in Fig. 19. The clear trend
is maintained over all three spectral bands and it
shows the necessity of lens structure complexity

Fig. 18. Monocentric lens geometries optimization behavior for
two different scales operating in 486–656 nm spectral range.

Fig. 19. Monocentric objective lens performance trade-off for different scales and three spectral bands (486–656 nm, 435–850 nm,
400–1000 nm).
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increase if we wish to push the scale and/or the aper-
ture size. For the time being, the area above pink
4GA-8 line remains terra incognita where the com-
plexity and manufacturing cost increase outweighs
the performance improvements. One exception to
that rule is 5GA-10 architecture, which can be quite
useful for medium scale (>100 mm) and large scale
designs and will be demonstrated in an example in
Section 5. 2GS global search still remains a powerful
tool in monocentric lens design, both for supplying
the final or seed designs for the more complex archi-
tectures. While the five-dimensional near-global
search gives substantially better results over the
2GS seeded Hammer search, completing it on 32
CPU cores at this point is very time consuming and
should be used only as a final attempt to squeeze out
the maximum performance capability from the lens
before manufacturing. Implementing the code for the
5D near global search on GPUs would possibly
reduce the search time by a factor of hundred cutting
it down from weeks to hours.

5. Specific Lens Design Examples

A. Water-Immersed Lens (f � 12 mm, F/1.79,
380–550 nm)

Water in natural reservoirs is highly scattering and
lossy due to suspended particles, necessitating large
NA optics for imaging at appreciable subsurface dis-
tances. The seawater transmission window is 300–
600 nm, compatible with back-illuminated silicon
sensors (Fig. 14). Underwater optics may also need
to resist high pressure on the front lens. The large
aperture of classical wide field underwater optics
[10,32] must be protected by a window or dome,
resulting in large weight and bulk.

Underwater objectives like the Gidrorussar model
11 (f � 23 mm) and 12 (f � 11.9 mm), which can
achieve F/2 with a 40°–60° overall field, have a thick
cemented doublet as a front lens [32] and combine
the Topogon structure with a Petzval projection lens
for distortion compensation and image flattening
over the 430–656 nm spectrum.

A 9 mm focal length F/1.79 monocentric under-
water lens was optimized for the 0.38 to 0.55 microm-
eter spectral band. Table 10 shows the optical

prescription of the 4GA-8 lens. The front lens is a ce-
mented solid ball, which can support high pressure.
The MTF of the underwater monocentric lens, shown
in the Fig. 20, achieves 70% of the diffraction limit
over a 120° full field of view.

B. Night Vision Lens (f � 16 mm, F/1.2, 500–900 nm)

Typical night vision goggles use image intensifiers
operating from 700 to 900 nm and a lightweight
(∼40 g) 25 mm focal length F/1.2 objective lens cover-
ing a 40° field of view [33].

We found it possible to design a 120° wide field of
view monocentric lens to satisfy these optical speci-
fications, but the weight was 170 g. Scaling the lens
to a 16 mm focal length matched the 40 g target
weight. The resulting optical prescription is shown
in Table 11. The F/1.2 lens operates from 500–
900 nm, which spans the entire spectral band of
the Gen III GaAsP photocathode. The lens resolves
100 lp∕mm (Fig. 21), well over the 70 lp∕mm
supported by image intensifiers. While the resulting
imager would provide some 50% lower angular res-
olution, it could operate over a 120° wide field, triple
that of standard night vision optics.

Table 10. Optical Prescription of the Water Immersed
Monocentric Lens

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity SEAWATER Infinity
1 8.30000 2.00000 SEAWATER 7.61630
2 6.03999 3.48360 TAFD30 5.71884
3 2.55639 2.55639 N-LAF21 2.53267
STO Infinity 2.55639 N-LAF21 1.87234
5 −2.55639 1.45793 LASF35 2.52255
6 −4.01433 0.15699 3.84362
7 −4.17132 2.61177 K-GIR79 3.96995
8 −6.78309 5.26472 6.24176
IMA −12.04781 10.43447

Fig. 20. Underwater monocentric lens (9 mm∕12 mm image/
object space focal length, F/1.79, 380–550 nm).

Table 11. Optical Prescription of the Night Vision Monocentric Lens

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 12.21344 7.19969 K-PSFN173 11.72988
2 5.01376 5.01376 K-GIR79 4.97624
STO Infinity 5.01376 K-GIR79 3.67166
4 −5.01376 2.76625 K-PSFN173 4.92548
5 −7.78001 0.26457 7.36222
6 −8.04458 5.49005 KZFS12 7.55792
7 −13.53463 2.43761 12.03582
IMA −15.97224 13.83509
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C. Short-Wave IR Lens (f � 12 mm, F/1.19,
900–1500 nm)

Skylight glow in the SWIR band provides a reliable
light source for night imaging even in the absence of
starlight [34].

This light can be sensed using uncooled InGaAs
focal planes such as those available from Sensors
Unlimited Corp. [35]. A 2GS seeded Hammer search
produced the 12 mm focal length F/1.19 lens pre-
scription shown in Table 12, with MTF and lens lay-
out as shown in the Fig. 22. The lens provides nearly
diffraction-limited resolution at 200 lp∕mm, com-
pared to the 33 lp∕mm Nyquist frequency of the
15 μm pixels in the 1280 × 1024 Sensors Unlimited
focal plane, and so monocentric optics will support
advanced imaging even for the next generation
SWIR sensors. The 15 g weight of this lens compares
favorably with the existing wearable night vision
optics.

D. Medium Scale Lens (f � 112 mm, F/2.33,
486–656 nm)

A 10GPix monocentric multiscale imager prototype
was designed and built for the AWARE program

[31]. The system was a 2GS monocentric objective
lens of F2 and S-BSL7 glass, designed to work in
combination with the secondary relay optics. While
the objective lens itself was not diffraction limited
(with RMS spot size 11 times larger than the
Airy disc) the whole system was designed to be
diffraction-limited. We identified better stand-alone
objective designs in the 2GS and 3GS architecture,
but these lenses are not easily fabricated due to size
limitations of available glass slabs. Size restrictions
may provide a hard constraint on the materials
choice for the outer shells in large monocentric
lenses.

Under this constraint, the 4GA-8 monocentric ar-
chitecture was unable to achieve a diffraction limited
f � 112 mm objective, so we used a 5GA-10 architec-
ture, choosing N-BK7 and F2 glasses for the outer
shells as they can be melted in blanks up to
500 mm thick [36]. Such lenses are more expensive
to fabricate than the two-glass objective, but they are
compatible with fiber-optic image transfer. Prescrip-
tion of the lens is shown in Table 13, and layout with
MTF performance in Fig. 23. Similar designs can be
obtained using Ohara S-FPM2 glass instead of
Sumita K-GFK68 glass for the core material.

E. Large Scale Lens (f � 280 mm, F/2.8, 450–700 nm)

In 2010, Brady and Marks [19] presented a 5GA-10
architecture monocentric lens design capable of up to
40 Gigapixels overall resolution. In the journal pub-
lication that followed [37], the group used a statisti-
cal approach to conduct a global search for this lens
using the Schott glass catalog and a specific merit
function. We performed our search using the merit
function of our 5D near-global optimizer using the
same pool of glasses (Schott catalog, as of October
2010) and obtained the 4GA-8 geometry solution
shown in Fig. 24 and Table 14.

Fig. 21. Gen III Night Vision monocentric lens (16 mm focal
length, F/1.2, 500–900 nm).

Table 12. Optical Prescription of the Short-Wave Infrared
Monocentric Lens

Radius Thickness Glass Semi-Diameter

OBJ Infinity Infinity Infinity
1 9.64853 6.08158 M-FDS2 9.22685
2 3.56695 3.56695 K-GIR79 3.55045
STO Infinity 3.56695 K-GIR79 2.81170
4 −3.56695 2.13160 K-PSFN215 3.52510
5 −5.69855 0.20974 5.40924
6 −5.90829 4.27312 N-SF4 5.56372
7 −10.18141 1.79011 9.05080
IMA −11.97152 10.36887

Fig. 22. SWIR monocentric lens (12 mm focal length, F/1.19,
900–1500 nm).
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The resulting 4GA-8 lens offers comparable size
and weight, and slightly better MTF performance,
than the 5GA-10 lens. It is necessary to note, how-
ever, that both lenses would be difficult to fabricate
due to the physical thickness of the glass elements
required.

6. Summary and Conclusion

This paper describes an investigation of wide field of
view monocentric lenses using architectures with
complexity ranging from a simple glass ball to mod-
erately complex structures with up to 10 degrees of
design freedom following the focal length constraint.
A 2GS lens structure works well for applications with
a moderate spectral range, focal length, and numeri-
cal aperture. However, for applications that substan-
tially increase one or more of these specifications, we
show that the best performance in a moderate com-
plexity lens is achieved with four-glass structures
with an air gap between meniscus elements behind
a spherical glass core (the 4GA-8 architecture).

To help identify the best specific designs for such
4GA-8 lenses, we presented a systematic optimiza-
tion method derived from the global optimization
of a two-glass lens and demonstrate its capability
for several case studies. We conclude that the general
class of monocentric objective lenses offers practical
high-performance options for a variety of wide-angle
imaging systems.

This research was supported by the DARPA SCE-
NICC program under contract W911NF-11-C-0210
and by the DARPA AWARE program under contract
HR0011-10C-0073.
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